(本题满分14分)ABCD为矩形,CF⊥平面ABCD,DE⊥平面ABCD,AB=4a,BC= CF=2a,DE=a, P为AB的中点.(1)求证:平面PCF⊥平

(本题满分14分)ABCD为矩形,CF⊥平面ABCD,DE⊥平面ABCD,AB=4a,BC= CF=2a,DE=a, P为AB的中点.(1)求证:平面PCF⊥平

题型:不详难度:来源:
(本题满分14分)
ABCD为矩形,CF⊥平面ABCD,DE⊥平面ABCD,AB=4a,BC= CF=2a,DE=a, P为AB的中点.

(1)求证:平面PCF⊥平面PDE;
(2)求证:AE∥平面BCF.
答案
证明:(1)在矩形ABCD中,由AP=BP=BC=2a可得PC=PD=………………1分
又CD=4a,由勾股定理可得PD⊥PC……………………3分
因为CF⊥平面ABCD,则PD⊥CF……………………5分
由PCCF=C可得PD⊥平面PFC……………………6分
故平面PCF⊥平面PDE……………………7分
(2)作FC中点M,连接EM、BM
由CF⊥平面ABCD,DE⊥平面ABCD可得CM∥DE,又CM=DE=a,得四边形DEMC为平行四边形……………………9分
故ME∥CD∥AB,且ME=D=AB,所以四边形AEMB为平行四边
故AE∥BM……………………12分
又AE平面BCF,BM平面BCF,所以AE∥平面BCF. ……………………14分
解析

举一反三
.在平面直角坐标系中,方程表示过点且平行于轴的直线。类比以上结论有:在空间直角坐标系中,方程表示         。
题型:不详难度:| 查看答案
(本小题满分14分)
一个几何体是由圆柱和三棱锥组合而成,点在圆的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图3所示,其中
(1)求证:
(2)求二面角的平面角的大小.

题型:不详难度:| 查看答案
(本小题满分14分)
如图8,在直角梯形中,,且.现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面互相垂直,如图9.
(1)求证:平面平面
(2)求平面与平面所成锐二面角的大小.
题型:不详难度:| 查看答案
如图,直三棱柱ABC—A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1,A1A的中点;

(1)求
(2)求
(3)
(4)求CB1与平面A1ABB1所成的角的余弦值.
题型:不详难度:| 查看答案
分别是轴,轴正方向上的单位向量,。若用来表示的夹角,则等于    (   )
A.B.C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.