本题考查平面与平面垂直的证明,求实数的取值.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意合理地进行等价转化,合理地运用向量法进行解题. (Ⅰ)法一:由AD∥BC,BC= AD,Q为AD的中点,知四边形BCDQ为平行四边形,故CD∥BQ.由∠ADC=90°,知QB⊥AD.由平面PAD⊥平面ABCD,知BQ⊥平面PAD.由此能够证明平面PQB⊥平面PAD. 法二:由AD∥BC,BC= AD,Q为AD的中点,知四边形BCDQ为平行四边形,故CD∥BQ.由∠ADC=90°,知∠AQB=90°.由PA=PD,知PQ⊥AD,故AD⊥平面PBQ.由此证明平面PQB⊥平面PAD. (Ⅱ)由PA=PD,Q为AD的中点,知PQ⊥AD.由平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,知PQ⊥平面ABCD.以Q为原点建立空间直角坐标系,利用向量法能够求出t=3. 解:(I)方法一∵AD // BC,BC=AD,Q为AD的中点,∴四边形BCDQ为平行四边形,∴CD // BQ . ∵∠ADC=90° ∴∠AQB=90° 即QB⊥AD.又 ∵平面PAD⊥平面ABCD 且平面PAD∩平面ABCD=AD, ∴BQ⊥平面PAD.∵BQ平面PQB,∴平面PQB⊥平面PAD. ……………………6分 方法二:AD // BC,BC=AD,Q为AD的中点, ∴ 四边形BCDQ为平行四边形,∴CD // BQ . ∵ ∠ADC=90° ∴∠AQB=90°. ∵ PA=PD, ∴PQ⊥AD. ∵ PQ∩BQ=Q,∴AD⊥平面PBQ. ∵ AD平面PAD,∴平面PQB⊥平面PAD.…………6分 (II)∵PA=PD,Q为AD的中点, ∴PQ⊥AD. ∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PQ⊥平面ABCD. 如图,以Q为原点建立空间直角坐标系.
则平面BQC的法向量为; ,, ,. 设,则,, ∵, ∴ , ∴ ………………9分 在平面MBQ中,,, ∴ 平面MBQ法向量为. ∵二面角M-BQ-C为30°,, ∴ . …………………………12分 |