在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间内,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.
题型:不详难度:来源:
在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间内,若两个正四面体的棱长的比为1∶2,则它们的体积比为________. |
答案
1∶8 |
解析
考查类比的方法,,所以体积比为1∶8. |
举一反三
在平面几何里可以得出正确结论:“正三角形的内切圆半径等于这正三角形的高的”.拓展到空间,类比平面几何的上述结论,则正四面体的内切球半径等于这个正四面体的高的________ . |
观察下列事实|x|+|y|=1的不同整数解(x,y)的个数为4 , |x|+|y|=2的不同整数解(x,y)的个数为8, |x|+|y|=3的不同整数解(x,y)的个数为12 ….则|x|+|y|=20的不同整数解(x,y)的个数为________. |
已知下列三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0,其中至少有一个方程有实根,求实数a的取值范围. |
已知a、b、c∈(0,+∞)且a<c,b<c,=1,若以a、b、c为三边构造三角形,则c的取值范围是________. |
设函数f0(x)=1-x2,f1(x)=,fn(x)=,(n≥1,n≥N),则方程f1(x)=有________个实数根,方程fn(x)=有________个实数根. |
最新试题
热门考点