观察下列各式:1=0+1,2+3+4=1+8,5+6+7+8+9=8+27,…,猜想第5个等式应为______.
题型:不详难度:来源:
观察下列各式:1=0+1,2+3+4=1+8,5+6+7+8+9=8+27,…,猜想第5个等式应为______. |
答案
由题意,(i)等式左边为一段连续自然数之和,且最后一个和数恰为各等式序号的立方,最前一个和数恰为等式序号减1平方加1;(ii)等式右边均为两数立方和,且也与等式序号具有明显的相关性. 故猜想第5个等式应为17+18+19+20+21+22+23+24+25=64+125 故答案为:17+18+19+20+21+22+23+24+25=64+125 |
举一反三
如果:在10进制中2004=4×100+0×101+0×102+2×103,那么类比:在5进制中数码2004折合成十进制为( ) |
有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( ) |
某校对文明班的评选设计了a,b,c,d,e五个方面的多元评价指标,并通过经验公式样S=++来计算各班的综合得分,S的值越高则评价效果越好,若某班在自测过程中各项指标显示出0<c<d<e<b<a,则下阶段要把其中一个指标的值增加1个单位,而使得S的值增加最多,那么该指标应为( ) |
现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为.类比到空间,有两个棱长均为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为______. |
若数列{an}(n∈N+)为等差数列,则数列bn=(n∈N+)也为等差数列,类比上述性质,相应地,若数列{cn}是等比数列且cn>0(n∈N+),则有数列dn=______(n∈N+)也是等比数列. |
最新试题
热门考点