已知直线:为参数), 曲线 (为参数).(1)设与相交于两点,求;(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个

已知直线:为参数), 曲线 (为参数).(1)设与相交于两点,求;(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个

题型:不详难度:来源:
已知直线为参数), 曲线 (为参数).
(1)设相交于两点,求
(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最小值.
答案
(1);(2).
解析

试题分析:本题考查直角坐标系与极坐标系之间的互化、参数方程的几何意义、三角函数的值域、函数图像的平移等基础知识,考查学生的转化能力和计算能力.第一问,由参数方程和普通方程的互化公式消参得出的普通方程,由于两图像相交,所以联立求交点,再利用两点间距离公式求;第二问,根据已知先得到曲线的参数方程,写出点P的坐标,利用点到直线的距离公式求距离,再利用三角函数的有界性求函数的最值.
试题解析:(1)的普通方程为的普通方程为
联立方程组解得的交点为,,
.
(2)的参数方程为为参数).故点的坐标是,
从而点到直线的距离是,
由此当时,取得最小值,且最小值为.
举一反三
已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(是参数).
(1)将曲线C的极坐标方程化为直角坐标方程,将直线的参数方程化为普通方程;
(2)若直线l与曲线C相交于A、B两点,且,试求实数m值.
题型:不详难度:| 查看答案
在极坐标系中,圆的圆心到直线 的距离是          
题型:不详难度:| 查看答案
已知直线的参数方程为,(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为.
(1)把圆C的极坐标方程化为直角坐标方程;
(2)将直线向右平移h个单位,所得直线与圆C相切,求h.
题型:不详难度:| 查看答案
在直角坐标系xoy中,曲线C1的参数方程为(t为参数),P为C1上的动点,Q为线段OP的中点.
(1)求点Q的轨迹C2的方程;
(2)在以O为极点,x轴的正半轴为极轴(两坐标系取相同的长度单位)的极坐标系中,N为曲线p=2sinθ上的动点,M为C2与x轴的交点,求|MN|的最大值.
题型:不详难度:| 查看答案
在极坐标系中,曲线与曲线的一个交点在极轴上,则的值为__________.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.