已知大于1的正数x,y,z满足x+y+z=33.(1)求证:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32.(2)求1log3x+log3y+

已知大于1的正数x,y,z满足x+y+z=33.(1)求证:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32.(2)求1log3x+log3y+

题型:不详难度:来源:
已知大于1的正数x,y,z满足x+y+z=3


3

(1)求证:
x2
x+2y+3z
+
y2
y+2z+3x
+
z2
z+2x+3y


3
2

(2)求
1
log3x+log3y
+
1
log3y+log3z
+
1
log3z+log3x
的最小值.
答案
(1)由柯西不等式得,
x2
x+2y+3z
+
y2
y+2z+3z
+
z2
z+2x+3y
)[(x+2y+3z)+(y+2z+3x)+(z+2x+3y)]≥(x+y+z)2=27
得:
x2
x+2y+3z
+
y2
y+2z+3x
+
z2
z+2x+3y


3
2

(2)∵
1
log3x+log3y
+
1
log3y+log3z
+
1
log3z+log3x
=
1
log3(xy)
+
1
log3(yz)
+
1
log3(zx)

由柯西不等式得:(
1
log3(xy)
+
1
log3(yz)
+
1
log3(zx)
)(log3(xy)+log3(yz)+log3(zx)),
由柯西不等式得:(
1
log3(xy)
+
1
log3(yz)
+
1
log3(zx)
)(log3(xy)+log3(yz)+log3(zx))≥9
所以,(
1
log3(xy)
+
1
log3(yz)
+
1
log3(zx)
)≥
9
(log3(xy)+log3(yz)+log3(zx))
=
9
2log3(xyz)

又∵3


3
=x+y+z≥3
3xyz


xyz≤3


3

log3xyz≤
3
2
.得
9
2log3xyz
9
2
×
2
3
=3

所以,
1
log3x+log3y
+
1
log3y+log3z
+
1
log3z+log3x
≥3
当且仅当x=y=z=


3
时,等号成立.
故所求的最小值是3.
举一反三
设x,y,z∈R,且满足:x2+y2+z2=1,x+2y+3z=


14
,则x+y+z=______.
题型:湖北难度:| 查看答案
已知x+2y+3z=1,则x2+y2+z2取最小值时,x+y+z的值为______.
题型:不详难度:| 查看答案
已知正数x,y,z满足5x+4y+3z=10.
(1)求证:
25x 2
4y+3z
+
16y2
3z+5x
+
9z2
5x+4y
≥5

(2)求9x2+9y2+z2的最小值.
题型:不详难度:| 查看答案
若2x+3y=1,求4x2+9y2的最小值,并求出最小值点.
题型:不详难度:| 查看答案
已知x+5y+3z=1,则x2+y2+z2的最小值为______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.