某公司为一家制冷设备厂设计生产某种型号的长方形薄板,其周长为4m.这种薄板须沿其对角线折叠后使用.如图所示,ABCD(AB>AD)为长方形薄板,沿AC折叠后AB

某公司为一家制冷设备厂设计生产某种型号的长方形薄板,其周长为4m.这种薄板须沿其对角线折叠后使用.如图所示,ABCD(AB>AD)为长方形薄板,沿AC折叠后AB

题型:不详难度:来源:
某公司为一家制冷设备厂设计生产某种型号的长方形薄板,其周长为4m.这种薄板须沿其对角线折叠后使用.如图所示,ABCD(AB>AD)为长方形薄板,沿AC折叠后AB′交DC于点P.当△ADP的面积最大时最节能,凹多边形ACB′PD的面积最大时制冷效果最好.
(1)设AB=xm,用x表示图中DP的长度,并写出x的取值范围;
(2)若要求最节能,应怎样设计薄板的长和宽?
(3)若要求制冷效果最好,应怎样设计薄板的长和宽?
答案
(1)y=2,1<x<2.(2)当薄板长为m,宽为(2-)m时,节能效果最好.(3)当薄板长为m,宽为(2-)m时,制冷效果最好.
解析
(1)由题意,AB=x,BC=2-x.
因x>2-x,故1<x<2.设DP=y,则PC=x-y.
因△ADP≌△CB′P,故PA=PC=x-y.
由PA2=AD2+DP2,得
(x-y)2=(2-x)2+y2y=2,1<x<2.
(2)记△ADP的面积为S1,则
S1 (2-x)=3-≤3-2
当且仅当x=∈(1,2)时,S1取得最大值.
故当薄板长为m,宽为(2-)m时,节能效果最好.
(3)记多边形ACB′PD的面积为S2,则
S2x(2-x)+(2-x)=3-,1<x<2.
于是S2′=-=0x=.
关于x的函数S2在(1,)上递增,在(,2)上递减.所以当x=时,S2取得最大值.
故当薄板长为m,宽为(2-)m时,制冷效果最好
举一反三
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(km/h)是车流密度x(辆/千米)的函数.当桥上的车流密度达到200辆/km时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/km时,车流速度为60km/h,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出其最大值.(精确到1辆/小时) 
题型:不详难度:| 查看答案
设函数f(x)=其中b>0,c∈R.当且仅当x=-2时,函数f(x)取得最小值-2.
(1)求函数f(x)的表达式;
(2)若方程f(x)=x+a(a∈R)至少有两个不相同的实数根,求a取值的集合.
题型:不详难度:| 查看答案
定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=1+a·.
(1)当a=1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围.
题型:不详难度:| 查看答案
设函数f(x)= (a<0)的定义域为D,若所有点(s,f(t))(s、t∈D)构成一个正方形区域,则a的值为________.
题型:不详难度:| 查看答案
已知函数,若,则的大小关系为___________.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.