设函数定义域为,且.设点是函数图像上的任意一点,过点分别作直线和 轴的垂线,垂足分别为.(1)写出的单调递减区间(不必证明);(2)问:是否为定值?若是,则求出

设函数定义域为,且.设点是函数图像上的任意一点,过点分别作直线和 轴的垂线,垂足分别为.(1)写出的单调递减区间(不必证明);(2)问:是否为定值?若是,则求出

题型:不详难度:来源:
设函数定义域为,且.设点是函数图像上的任意一点,过点分别作直线轴的垂线,垂足分别为

(1)写出的单调递减区间(不必证明);
(2)问:是否为定值?若是,则求出该定值,若不是,则说明理由;
(3)设为坐标原点,求四边形面积的最小值.
答案
(1)函数上是减函数.
(2) 
(3)
解析

试题分析:
思路分析:(1)根据函数的图象过点,确定a,进一步认识函数的单调性。
(2)、设 ,根据直线的斜率 ,确定的方程。
利用联立方程组求得M,N的坐标,计算可得 。
(3)、为求四边形面积的最小值,根据(2)将面积用 表示,
,应用均值定理求解。
解:(1)、因为函数的图象过点
所以函数上是减函数.
(2)、设 ,直线的斜率 ,
的方程
联立 ,
 、 

 
(2)、(文)设,直线的斜率为
的方程 ,
联立 , ,
3、  ,



当且仅当时,等号成立,∴ 此时四边形面积有最小值
点评:中档题,本题综合性较强,难度较大。以“对号函数”为背景,综合考查函数的单调性,直线与双曲线的位置关系,平面向量的坐标运算,均值定理的应用,面积计算等。
举一反三
(Ⅰ)已知函数,若存在,使得,则称是函数的一个不动点,设二次函数.
(Ⅰ) 当时,求函数的不动点;
(Ⅱ) 若对于任意实数,函数恒有两个不同的不动点,求实数的取值范围;
(Ⅲ) 在(Ⅱ)的条件下,若函数的图象上两点的横坐标是函数的不动点,且直线是线段的垂直平分线,求实数的取值范围.
题型:不详难度:| 查看答案
下列对应关系f中,不是从集合A到集合B的映射的是(   )
A.A=,B=(0,1),f:求正弦;
B.A=R,B=R,f:取绝对值
C.A=,B=R,f:求平方;
D.A=R,B=R,f:取倒数

题型:不详难度:| 查看答案
渔场中鱼群的最大养殖量是m吨,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须留出适当的空闲量。已知鱼群的年增长量y吨和实际养殖量x吨与空闲率乘积成正比,比例系数为k(k>0).
写出y关于x的函数关系式,指出这个函数的定义域;
求鱼群年增长量的最大值;
当鱼群的年增长量达到最大值时,求k的取值范围.
题型:不详难度:| 查看答案
设函数的定义域为D,如果,使 (C为常数成立,则称函数在D上的均值为C. 给出下列四个函数:①;②;③;④,则满足在其定义域上均值为1的函数的个数是(    )
A.1          B.2           C.3            D.4
题型:不详难度:| 查看答案
已知函数,其图象为曲线,点为曲线上的动点,在点处作曲线的切线与曲线交于另一点,在点处作曲线的切线.
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)当点时,的方程为,求实数的值;
(Ⅲ)设切线的斜率分别为,试问:是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.