设为奇函数,为常数,(1)求的值;(2)证明在区间上单调递增;(3)若,不等式恒成立,求实数的取值范围。

设为奇函数,为常数,(1)求的值;(2)证明在区间上单调递增;(3)若,不等式恒成立,求实数的取值范围。

题型:不详难度:来源:
为奇函数,为常数,
(1)求的值;
(2)证明在区间上单调递增;
(3)若,不等式恒成立,求实数的取值范围。
答案
(1)-1(2)∵,(),设,则
,∴在区间上单调递增(3)
解析

试题分析:(1)∵,∴
,即, ∴
(2)∵,(),设,则
,∴
在区间上单调递增
(3)设,则上是增函数
恒成立,∴-
点评:若函数满足则是奇函数,若满足则是偶函数,第二问证明函数单调性采用的是定义的方法,此外导数法也是判定单调性常用方法,第三问不等式恒成立问题中常将其转化为求函数最值
举一反三
已知的最小值为,若函数
的解集为
A.B.C.D.

题型:不详难度:| 查看答案
已知函数
(Ⅰ)若,求的值;
(Ⅱ)若对于恒成立,求实数m的取值范围。
题型:不详难度:| 查看答案
2013年,首都北京经历了59年来雾霾天气最多的一个月。经气象局统计,北京市从1月1日至1月30日这30天里有26天出现雾霾天气。《环境空气质量指数(AQI)技术规定(试行)》将空气质量指数分为六级:其中,中度污染(四级),指数为151—200;重度污染(五级),指数为201—300;严重污染(六级),指数大于300. 下面表1是该观测点记录的4天里,AQI指数与当天的空气水平可见度(千米)的情况,表2是某气象观测点记录的北京1月1日到1月30日AQI指数频数统计结果,
表1:AQI指数与当天的空气水平可见度(千米)情况
AQI指数




空气可见度(千米)




表2:北京1月1日到1月30日AQI指数频数统计
AQI指数





频数
3
6
12
6
3
(Ⅰ)设变量,根据表1的数据,求出关于的线性回归方程;
(Ⅱ)根据表2估计这30天AQI指数的平均值.
(用最小二乘法求线性回归方程系数公式
题型:不详难度:| 查看答案
已知函数
(Ⅰ)若,求不等式的解集;
(Ⅱ)若方程有三个不同的解,求的取值范围.
题型:不详难度:| 查看答案
如果关于的不等式的解集分别为,那么称这两个不等式为对偶不等式.如果不等式与不等式为对偶不等式,且,那么______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.