关于的方程,给出下列四个命题:①存在实数,使得方程恰有2个不同实根; ②存在实数,使得方程恰有4个不同实根;③存在实数,使得方程恰有5个不同实根; ④存在实数,

关于的方程,给出下列四个命题:①存在实数,使得方程恰有2个不同实根; ②存在实数,使得方程恰有4个不同实根;③存在实数,使得方程恰有5个不同实根; ④存在实数,

题型:不详难度:来源:
关于的方程,给出下列四个命题:
①存在实数,使得方程恰有2个不同实根; ②存在实数,使得方程恰有4个不同实根;
③存在实数,使得方程恰有5个不同实根; ④存在实数,使得方程恰有8个不同实根;
其中假命题的个数是(  )
A.0B.1 C.2D.3

答案
A
解析

试题分析:关于x的方程可化为(1)
(-1<x<1)(2)
①当k=-2时,方程(1)的解为±,方程(2)无解,原方程恰有2个不同的实根;
②当k=时,方程(1)有两个不同的实根±,方程(2)有两个不同的实根±,即原方程恰有4个不同的实根;
③当k=0时,方程(1)的解为-1,+1,±,方程(2)的解为x=0,原方程恰有5个不同的实根;
④当k=时,方程(1)的解为±,±,方程(2)的解为±,±
即原方程恰有8个不同的实根.
∴四个命题都是真命题.故选A。
点评:中档题,通过讨论x的范围,将方程中的绝对值符号去掉,这是一般思路。而k实施分类讨论又是基于函数值域。
举一反三
(本小题满分12分)
已知函数:.
(1) 当时①求的单调区间;
②设,若对任意,存在,使,求实数取值范围.
(2) 当时,恒有成立,求的取值范围.
题型:不详难度:| 查看答案
(本小题满分10分)
已知函数.
(1) 若不等式的解集为,求实数的值;
(2) 在(1)的条件下,使能成立,求实数a的取值范围.
题型:不详难度:| 查看答案
若存在实数x∈[2,4],使x2-2x+5-m<0成立,则m的取值范围为
A.(13,+∞)B.(5,+∞)C.(4,+∞)D.(-∞,13)

题型:不详难度:| 查看答案
列车提速可以提高铁路运输量.列车运行时,前后两车必须要保持一个“安全间隔距离d(千米)”,“安全间隔距离d(千米)”与列车的速度v(千米/小时)的平方成正比(比例系数k=).假设所有的列车长度l均为0.4千米,最大速度均为v0(千米/小时).问:列车车速多大时,单位时间流量Q= 最大?
题型:不详难度:| 查看答案
(本小题满分14分)
已知函数f(x)=(x2+ax-2a-3)·e3-x (a∈R)
(1)讨论f(x)的单调性;
(2)设g(x)=(a2+)ex(a>0),若存在x1,x2∈[0,4]使得|f(x1)-g(x2)|<1成立,求a的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.