某市的出租车的价格规定:起步费11元,可行3千米;3千米后按每千米2.1元计价,可再行7千米;以后每千米都按3.15元计价,设每一次乘车的车费由行车里程确定.(

某市的出租车的价格规定:起步费11元,可行3千米;3千米后按每千米2.1元计价,可再行7千米;以后每千米都按3.15元计价,设每一次乘车的车费由行车里程确定.(

题型:不详难度:来源:
某市的出租车的价格规定:起步费11元,可行3千米;3千米后按每千米2.1元计价,可再行7千米;以后每千米都按3.15元计价,设每一次乘车的车费由行车里程确定.
(1)请写出一次乘车的车费y元与行车的里程x千米的函数关系;
(2)计算如果一次乘车费为32元,那么汽车行程为多少千米?
(3)请问当行程为28千米时,请你设计一种乘车方案,使总费用最省.
答案
(1)(2)千米(3)当行程为28千米时,两次分别行程10千米时下车,重新上车计费,其费用为72.9元。
解析
(1)  (4分)
(2)=32,  千米(6分)
(3)当行程为3千米时,平均每千米为11/3元,显然当行程为10千米时,费用最省,即行程10千米时下车,重新上车计费,故当行程为28千米时,两次分别行程10千米时下车,重新上车计费,其费用为72.9元。
举一反三
已知函数有如下性质:如果常数,那么该函数在(0,)上减函数,在是增函数。
(1)如果函数的值域为,求的值;
(2)研究函数(常数)在定义域的单调性,并说明理由;
(3)对函数(常数)作出推广,使它们都是你所推广的函数的特例。研究推广后的函数的单调性(只须写出结论,不必证明),并求函数
(n是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论)。
题型:不详难度:| 查看答案
设函数是R上的奇函数。
(Ⅰ)求a的值;   (Ⅱ)求的反函数;
(Ⅲ)若k,解不等式: 
题型:不详难度:| 查看答案
某公司生产一种产品,每年需投入固定成本0.5万元,此外每生产1百件这样的产品,还需增加投入0.25万元,经市场调查知这种产品年需求量为5百件,产品销售数量为t(百件)时,销售所得的收入为万元
(1)该公司这种产品的年生产量为x百件,生产并销售这种产品所得到的利润为当年产量x的函数f(x),求f(x);
(2)当该公司的年产量为多大时当年所获得的利润最大.
题型:不详难度:| 查看答案
造船厂年造船量20艘,造船艘产值函数为(单位:万元),成本函数(单位:万元),又在经济学中,函数的边际函数定义为
(1)求利润函数及边际利润函数(利润=产值—成本)
(2)问年造船量安排多少艘时,公司造船利润最大
(3)边际利润函数的单调递减区间
题型:不详难度:| 查看答案
已知函数的定义域为,且. 设点是函数图象上的任意一点,过点分别作直线轴的垂线,垂足分别为
(1)求的值;
(2)问:是否为定值?若是,则求出该定值,若不是,则说明理由;
(3)设为坐标原点,求四边形面积的最小值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.