(1)分别写出按甲、乙两种优惠方案实际付款金额甲(元)、乙(元)与之间的函数关系式;(2)如果该商场即允许只选择一种优惠方案购买,也允许同时用两种优惠方案购买,

(1)分别写出按甲、乙两种优惠方案实际付款金额甲(元)、乙(元)与之间的函数关系式;(2)如果该商场即允许只选择一种优惠方案购买,也允许同时用两种优惠方案购买,

题型:不详难度:来源:



(1)分别写出按甲、乙两种优惠方案实际付款金额(元)、(元)与之间的函数关系式;
(2)如果该商场即允许只选择一种优惠方案购买,也允许同时用两种优惠方案购买,请你就购买这种毛笔10支和这种书法练习本60本设计一种最省钱的购买方案
答案

(1)=
=
(2)购买方案是先按甲种优惠办法购买10支毛笔得到10本书法练习本,再按乙种优惠方案购买50本书法练习本
解析
(1)=
= ……2分
(2)设按甲种优惠方案购买支毛笔,则获赠本书法练习本;
因此需要按乙优惠方案购买支毛笔和本书法练习本.……2分
总费用为
显然是关于的一次函数且是减函数的类型,
故当最大即时,最小,最小值为475.……2分
因此最省钱的购买方案是先按甲种优惠办法购买10支毛笔得到10本书法练习本,再按乙种优惠方案购买50本书法练习本.……2分
举一反三
(本小题满分15分)已知函数
(Ⅰ)当时,判断函数在定义域上的单调性;
(Ⅱ)若函数的图象有两个不同的交点,求的取值范围;
(Ⅲ)设点是函数图象上的两点,平行于的切线以为切点,求证:
题型:不详难度:| 查看答案



⑴当时,求函数的值域;
⑵若函数在定义域上是减函数,求的取值范围;
⑶求函数x∈(0,1]上的最大值及最小值,并求出函数取最值时的值
题型:不详难度:| 查看答案
有甲、乙两种商品,经营销售这两种商品所能获得的利润依次是P(万元)和Q(万元),它们与投入资金x(万元)的关系,有经验公式:,今有3万元资金投入经营甲、乙两种商品,为获得最大利润,则对甲、乙两种商品的资金投入分别是多少?能获得最大的利润是多少?
题型:不详难度:| 查看答案
是定义在实数集上的函数,且对任意实数满足恒成立
(1)求
(2)求函数的解析式;
(3)若方程恰有两个实数根在内,求实数的取值范围
题型:不详难度:| 查看答案
函数.
(1)求的解析式;
(2)求证:函数为奇函数;
(3)若实数满足:, 求的取值范围
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.