给出下列两个条件:(1)f(+1)=x+2;(2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.试分别求出f(x)的解析式.
题型:不详难度:来源:
给出下列两个条件:(1)f(+1)=x+2; (2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.试分别求出f(x)的解析式. |
答案
(1)f(x)=x2-1,x∈[1,+∞)(2)f(x)=x2-x+3 |
解析
(1)令t=+1,∴t≥1,x=(t-1)2.则f(t)=(t-1)2+2(t-1)=t2-1,即f(x)=x2-1,x∈[1,+∞). (2)设f(x)=ax2+bx+c (a≠0),∴f(x+2)=a(x+2)2+b(x+2)+c,则f(x+2)-f(x)=4ax+4a+2b=4x+2. ∴,∴,又f(0)=3c=3,∴f(x)=x2-x+3. |
举一反三
某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x<1),则出厂价相应提高的比例为0.75x, 同时预计年销售量增加的比例为0.6x.已知年利润=(出厂价-投入成本)×年销售量. (1)写出本年度预计的年利润y与投入成本增加的比例x的关系式; (2)为使本年度利润比上年有所增加,问投入成本增加的比例x应在什么范围内? |
(1)已知f()=lgx,求f(x); (2)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x); (3)已知f(x)满足2f(x)+f()=3x,求f(x). |
要使函数y=1+2x+4xa在x∈(-∞,1]上y>0恒成立,求a的取值范围. |
(本小题满分12分)已知函数。 (1)证明:; (2)求。 |
(本小题满分12分) 某汽车运输公司购买了一批豪华大客车投入客运,据市场分析,每辆客车营运的总利润y万元与营运年数x(x∈N*)的关系为y=-x2+18x-36。 (1)每辆客车营运多少年,可使其营运总利润最大? (2)每辆客车营运多少年,可使其营运年平均利润最大? |
最新试题
热门考点