limn→∞(12n2+1+32n2+1+52n2+1+…+2n-12n2+1)的值为______.

limn→∞(12n2+1+32n2+1+52n2+1+…+2n-12n2+1)的值为______.

题型:卢湾区一模难度:来源:
lim
n→∞
(
1
2n2+1
+
3
2n2+1
+
5
2n2+1
+…+
2n-1
2n2+1
)
的值为______.
答案
lim
n→∞
(
1
2n2+1
+
3
2n2+1
+
5
2n2+1
+…+
2n-1
2n2+1
)
=
lim
n→∞
 
n[1+(2n-1)]
2
2n2+1
 
=
lim
n→∞
2n2
4n2+2
=
lim
n→∞
 
2
4+
2
n2
=
2
4+0
=
1
2

故答案为
1
2
举一反三
已知数列{an}、{bn}的前n项和分别为Sn、Tn,且Sn=2-2an,Tn=3-bn-
1
2n-2
. 
(I)求数列{an}、{bn}的通项公式;
(II)求
lim
n→∞
(a1b1+a2b2+a3b3+…+anbn).
题型:唐山三模难度:| 查看答案
函数f(x)是定义在[0,1]上,满足f(x)=2f(
x
2
)
且f(1)=1,在每个区间(
1
2i
1
2i-1
]
(i=1,2,3,…)上,y=f(x)的图象都是平行于x轴的直线的一部分.
(1)求f(0)及f(
1
2
)
f(
1
4
)
的值,并归纳出f(
1
2i
)
(i=1,2,3,…)的表达式;
(2)设直线x=
1
2i
x=
1
2i-1
,x轴及y=f(x)的图象围成的矩形的面积为ai(i=1,2,3,…),求a1,a2
lim
n→∞
(a1+a2+…+an)
的值.
题型:不详难度:| 查看答案
数列{an}中,a1=1,Sn是前n项和,当n≥2时,an=3Sn,则
lim
n→∞
Sn+1
Sn+1-3
的值是(  )
A.-2B.-
4
5
C.-
1
3
D.1
题型:不详难度:| 查看答案
已知数列{an}的各项均为正整数,且满足an+1=an2-2nan+2(n∈N*),又a5=11.
(1)求a1,a2,a3,a4的值,并由此推测出{an}的通项公式(不要求证明);
(2)设bn=11-an,Sn=b1+b2+…+bn,Sn′=|b1|+|b2|+…+|bn|,求
lim
n→∞
Sn
Sn
的值.
题型:不详难度:| 查看答案
在数列{an}中,若a1,a2是正整数,且an=|an-1-an-2|,n=3,4,5,…,则称{an}为“绝对差数列”.
(Ⅰ)举出一个前五项不为零的“绝对差数列”(只要求写出前十项);
(Ⅱ)若“绝对差数列”{an}中,a20=3,a21=0,数列{bn}满足bn=an+an+1+an+2,n=1,2,3,…,分别判断当n→∞时,an与bn的极限是否存在,如果存在,求出其极限值;
(Ⅲ)证明:任何“绝对差数列”中总含有无穷多个为零的项.
题型:北京难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.