已知各项均为正数的等比数列{an}的前n项和为Sn,若limn→+∞Sn+1Sn=1,则公比q的取值范围是(  )A.0<q<1B.0<q≤1C.q>1D.q≥

已知各项均为正数的等比数列{an}的前n项和为Sn,若limn→+∞Sn+1Sn=1,则公比q的取值范围是(  )A.0<q<1B.0<q≤1C.q>1D.q≥

题型:奉贤区二模难度:来源:
已知各项均为正数的等比数列{an}的前n项和为Sn,若
lim
n→+∞
Sn+1
Sn
=1
,则公比q的取值范围是(  )
A.0<q<1B.0<q≤1C.q>1D.q≥1
答案
当q=1时,Sn+1=(n+1)a1,Sn=na1
所以
lim
n→∞
Sn+1
Sn
=
lim
n→∞
n+1
n
=1成立,
当q≠1时,Sn=
a1(1-qn)
1-q
,所以
lim
n→∞
Sn+1
Sn
=
lim
n→∞
1-qn+1
1-qn

可以看出当0<q<1时,
lim
n→∞
1-qn+1
1-qn
=1成立,
故q的取值范围是(0,1].
故选B.
举一反三
数列{xn}由下列条件确定:x1=a>0,xn+1=
1
2
(xn+
a
xn
)
,n∈N.
(Ⅰ)证明:对n≥2,总有xn


a

(Ⅱ)证明:对n≥2,总有xn≥xn+1
(Ⅲ)若数列{xn}的极限存在,且大于零,求
lim
n→∞
xn的值.
题型:北京难度:| 查看答案
设等比数列{an}(n∈N)的公比q=-
1
2
,且
lim
n→∞
(a1+a3+a5+…+a2n-1)=
8
3
,则a1=______.
题型:上海难度:| 查看答案
lim
n→∞
[
1
3
-
1
9
+
1
27
+…+(-1)n-1
1
3n
]
的值为 ______.
题型:金山区二模难度:| 查看答案
在无穷等比数列{an}中,a1=1,q=
1
2
,记Tn=
a22
+
a24
+
a26
+…+
a22n
,则
lim
n→∞
Tn
等于______.
题型:奉贤区一模难度:| 查看答案
(文)已知等差数列{an}的首项a1=0且公差d≠0,bn=2^an(n∈N*),Sn是数列{bn}的前n项和.
(1)求Sn
(2)设Tn=
Sn
bn
(n∈N*),当d>0时,求
lim
n→+∞
Tn
题型:静安区一模难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.