用分析法证明:6+7>22+5.

用分析法证明:6+7>22+5.

题型:不详难度:来源:
用分析法证明:


6
+


7
>2


2
+


5
答案
证明:要证


6
+


7
>2


2
+


5
,只要证 6+7+2


42
>8+5+4


10

只要证


42
>2


10
,即证 42>40.  而 42>40  显然成立,故原不等式成立.
举一反三
已知x,y,z∈R+,求证:
(1)(x+y+z)3≥27xyz;  
(2)(
x
y
+
y
z
+
z
x
)(
y
x
+
z
y
+
x
z
)≥9
;  
(3)(x+y+z)(x2+y2+z2)≥9xyz.
题型:不详难度:| 查看答案
分析法证明不等式中所说的“执果索因”是指寻求使不等式成立的(  )
A.必要条件B.充分条件
C.充要条件D.必要或充分条件
题型:不详难度:| 查看答案
已知a,b,c,d是实数,用分析法证明:


a2+b2
+


c2+d2


(a+c)2+(b+d)2
题型:不详难度:| 查看答案
设x,y,z∈R+,求证:
2x2
y+z
+
2y2
z+x
+
2z2
x+y
≥x+y+z
题型:不详难度:| 查看答案
xn=


1×2
+


2×3
+…+


n(n+1)
(n为正整数),
求证:不等式  
n(n+1)
2
<x n
(n+1)2
2
对一切正整数n恒成立.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.