【题文】函数的单调增区间依次为(  )A.(-∞,0] ,[1,+∞) B.(-∞,0],(-∞,1]C.[0,+∞), [1,+∞)D.[0,+∞)

【题文】函数的单调增区间依次为(  )A.(-∞,0] ,[1,+∞) B.(-∞,0],(-∞,1]C.[0,+∞), [1,+∞)D.[0,+∞)

题型:难度:来源:
【题文】函数的单调增区间依次为(  )
A.(-∞,0] ,[1,+∞) B.(-∞,0],(-∞,1]
C.[0,+∞), [1,+∞)D.[0,+∞),(-∞,1]
答案
【答案】D
解析
【解析】
试题分析:求出函数f(x)、g(x)的单调增区间即可.
因为
所以f(x)的单调增区间是
又因为
函数的图象是抛物线,对称轴是x=1,
所以时,g(x)是增函数,
故g(x)的单调增区间是
所以f(x)、g(x)的单调增区间依次为
故选:D.
考点:函数单调性的判断与证明.
举一反三
【题文】函数f (x)=-x2+4x+a,x∈[0,1],若f (x)有最小值-2,则f (x)的最大值为(  )
A.-1B.0C.1D.2
题型:难度:| 查看答案
【题文】是定义在上的减函数,则的取值范围是(  )
A.[B.[] C.(D.(]
题型:难度:| 查看答案
【题文】若函数在区间上单调递减,则实数的取值范围是          .
题型:难度:| 查看答案
【题文】(本题满分12分)已知二次函数的最小值为-1,且
(Ⅰ)求的值;
(Ⅱ)求上的单调区间与值域.
题型:难度:| 查看答案
【题文】(本题满分12分)已知函数
(Ⅰ)求的定义域和值域;
(Ⅱ)判断函数在区间(2,5)上的单调性,并用定义来证明所得结论.
题型:难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.