【题文】设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.(1)求f(π)的值;(2)当-4≤x≤4时,求f(x)的

【题文】设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.(1)求f(π)的值;(2)当-4≤x≤4时,求f(x)的

题型:难度:来源:
【题文】设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.
(1)求f(π)的值;
(2)当-4≤x≤4时,求f(x)的图象与x轴所围图形的面积.
答案
【答案】(1)π-4.      (2)4
解析
【解析】解:(1)由f(x+2)=-f(x),得
f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),
所以f(x)是以4为周期的周期函数,从而得
f(π)=f(π-4)=-f(4-π)=-(4-π)=π-4.
(2)由f(x)是奇函数与f(x+2)=-f(x),得f[(x-1)+2]=-f(x-1)=f[-(x-1)],即f(1+x)=f(1-x).
故知函数y=f(x)的图象关于直线x=1对称.
又0≤x≤1时,f(x)=x,且f(x)的图象关于原点成中心对称,则f(x)的图象如图所示.

当-4≤x≤4时,f(x)的图象与x轴围成的图形面积为S,
则S=4SOAB=4×(×2×1)=4.
举一反三
【题文】已知函数f(x)的定义域为{x|x∈R,且x≠0},对定义域内的任意x1、x2,都有f(x1·x2)=f(x1)+f(x2),且当x>1时,f(x)>0.
(1)求证:f(x)是偶函数;
(2)求证:f(x)在(0,+∞)上是增函数.
题型:难度:| 查看答案
【题文】若函数f(x)、g(x)分别是R上的奇函数、偶函数,且满足f(x)-g(x)=ex,则有(  )
A.f(2)<f(3)<g(0)B.g(0)<f(3)<f(2)
C.f(2)<g(0)<f(3)D.g(0)<f(2)<f(3)
题型:难度:| 查看答案
【题文】若f(x)是偶函数,且当x∈[0,+∞)时,f(x)=x-1,则f(x-1)<0的解集是(  )
A.(-1,0)B.(-∞,0)∪(1,2)
C.(1,2)D.(0,2)
题型:难度:| 查看答案
【题文】定义在R上的函数f(x)满足f(-x)=-f(x),f(x-2)=f(x+2),且x∈(-1,0)时,f(x)=2x,则f(log220)的值为(  )
A.1B.C.-1D.-
题型:难度:| 查看答案
【题文】已知定义域为R的函数f(x)为奇函数,且满足f(x+2)=-f(x),当x∈[0,1]时,f(x)=2x-1.
(1)求f(x)在[-1,0)上的解析式;
(2)求f(24)的值.
题型:难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.