【题文】已知定义在R上的奇函数,满足,且在区间[0,2]上是增函数,则( ).
题型:难度:来源:
【题文】已知定义在R上的奇函数
,满足
,且在区间[0,2]上是增函
数,则( ).
答案
【答案】D
解析
【解析】由f(x)满足f(x-4)=-f(x)可变形为f(x-8)=f(x),得到函数是以8为周期的周期函数,则有f(-25)=f(-1),f(80)=f(0),f(11)=f(3),再由f(x)在R上是奇函数,f(0)=0,得到f(80)=f(0)=0,f(-25)=f(-1),再由f(x)在区间[0,2]上是增函数,以及奇函数的性质,推出函数在[-2,2]上的单调性,即可得到结论.
解:∵f(x)满足f(x-4)=-f(x),
∴f(x-8)=f(x),
∴函数是以8为周期的周期函数,
则f(-25)=f(-1),f(80)=f(0),f(11)=f(3),
又∵f(x)在R上是奇函数,f(0)=0,
得f(80)=f(0)=0,f(-25)=f(-1),
而由f(x-4)=-f(x)
得f(11)=f(3)=-f(-1)=f(1),
又∵f(x)在区间[0,2]上是增函数,f(x)在R上是奇函数
∴f(x)在区间[-2,2]上是增函数
∴f(1)>f(0)>f(-1),
即f(-25)<f(80)<f(11),
故选D
举一反三
【题文】已知函数
定义域为R,则
一定为 (
A.偶函数 | B.奇函数 |
C.非奇非偶函数 | D.既奇又偶函数 |
【题文】已知定义在R上的奇函数
,满足
,且在区间[0,2]上是增函
数,则( ).
【题文】已知函数
定义域为R,则
一定为 (
A.偶函数 | B.奇函数 |
C.非奇非偶函数 | D.既奇又偶函数 |
【题文】若函数
的图像恒过定点,则定点的坐标为 ( )
【题文】若函数
的图像恒过定点,则定点的坐标为 ( )
最新试题
热门考点