有一极地卫星绕地球做匀速圆周运动,该卫星的运动周期为T0/4,其中T0为地球的自转周期.已知地球表面的重力加速度为g,地球半径为R..求:(1)该卫星一昼夜经过
题型:不详难度:来源:
有一极地卫星绕地球做匀速圆周运动,该卫星的运动周期为T0/4,其中T0为地球的自转周期.已知地球表面的重力加速度为g,地球半径为R..求: (1)该卫星一昼夜经过赤道上空的次数n为多少?试说明理由。 (2)该卫星离地面的高度H. |
答案
(1)8次(2) |
解析
试题分析:(1)由于一个周期通过赤道上空两次,卫星在一昼夜共四个周期,故通过8次 (2)根据万有引力定律:(R+H) 又 解得: |
举一反三
(2012•福建)一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v.假设宇航员在该行星表面上用弹簧测力计测量一质量为m的物体重力,物体静止时,弹簧测力计的示数为N.已知引力常量为G,则这颗行星的质量为( ) |
两个行星各有一个卫星绕其表面运行,已知两个卫星的周期之比为1:3,两行星半径之比为3:1,则: (1)两行星密度之比为多少? (2)两行星表面处重力加速度之比为多少? |
假设地球的卫星1和月球的卫星2,分别绕地球和月球做匀速圆周运动,如图所示,两颗卫星2的轨道半径相同。已知地球的质量大于月球的质量,两颗卫星相比较,下列说法中正确的是
A.卫星1的向心加速度较小 | B.卫星1的动能较大 | C.卫星1的周期较小 | D.若卫星1是地球的同步卫星,则它的质量一定 |
|
假设两颗“近地”卫星1和2的质量相同,都绕地球做匀速圆周运动,如图所示,卫星2的轨道半径更大些。两颗卫星相比较,下列说法中正确的是
A.卫星1的向心加速度较小 | B.卫星1的动能较小 | C.卫星1的周期较小 | D.卫星1的机械能较小 |
|
(9分)在物理学中,常常用等效替代、类比、微小量放大等方法来研究问题。如在牛顿发现万有引力定律一百多年后,卡文迪许利用微小量放大法由实验测出了万有引力常量G的数值,图所示是卡文迪许扭秤实验示意图。卡文迪许的实验常被称为是“称量地球质量”的实验,因为由G的数值及其他已知量,就可计算出地球的质量,卡文迪许也因此被誉为第一个称量地球的人。
(1)若在某次实验中,卡文迪许测出质量分别为m1、m2相距为r的两个小球之间引力的大小为F,求万有引力常量G; (2)若已知地球半径为R,地球表面重力加速度为g,万有引力常量为G,忽略地球自转的影响,请推导出地球质量及地球平均密度的表达式。 |
最新试题
热门考点