lim(n趋向无穷){[(n^2+1)^(1/2)]/(n+1)}^n怎么解.

lim(n趋向无穷){[(n^2+1)^(1/2)]/(n+1)}^n怎么解.

题目
lim(n趋向无穷){[(n^2+1)^(1/2)]/(n+1)}^n怎么解.
答案
lim e^{n[ln√(n²+1)-ln(n+1)]}
=lim e^{[ln√(n²+1)-ln(n+1)]/(1/n)} 应用洛必达法则
=lim e^[-(n-1)n²/(n+1)(n²+1)]
=1/e
希望对你有帮助,望采纳,谢谢~
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.