如果多项式P=2a2-8ab+17b2-16a-4b+2000,求P的最小值.

如果多项式P=2a2-8ab+17b2-16a-4b+2000,求P的最小值.

题目
如果多项式P=2a2-8ab+17b2-16a-4b+2000,求P的最小值.
答案
由题意,得
P=a2+a2-8ab+b2+16b2-16a-4b+2000,
=(a2-16a+64)+(a2-8ab+16b2)+(b2-4b+4)+1932,
=(a-8)2+(a-4b)2+(b-2)2+1932,
∵要使P值最小,则=(a-8)2、(a-4b)2、(b-2)2 最小,他们是非负数,所以最小值为0,
∴P的最小值为1932.
答:P的最小值为1932.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.