直线y=kx b与椭圆x^2/4 y^2=1交于A,B两点,记三角形AOB的面积为S.
题目
直线y=kx b与椭圆x^2/4 y^2=1交于A,B两点,记三角形AOB的面积为S.
1.求在k=0,0
答案
1.
k=0时,y=b,交于A,B两点,知道A,B关于y轴对称.所以
S=|AB|*|b|/2=|x1*y1|,x1 和y1为A的坐标.
因为A在椭圆x^2/4+y^2=1上,且x^2/4+y^2=1>=2(|x|/2)*|y|
所以|x1*y1|
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点