如图所示,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,且AE=BF,请你找出线段OE与OF的数量关系,并给予证明.
题目
如图所示,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,且AE=BF,请你找出线段OE与OF的数量关系,并给予证明.
答案
OE=OF,
证明:连接OA,OB,
∵OA=OB,
∴∠OAB=∠OBA.即∠OAE=∠OBF.
∴在△OAE与△OBF中,
,
∴△OAE≌△OBF(SAS).
∴OE=OF.
OE=OF,可以利用SAS判定△OAE≌△OBF,根据全等三角形的对应边相等,可得到OE=OF.
全等三角形的判定与性质;圆的认识.
考查圆的性质,全等三角形的判定等知识的综合应用及推理论证能力.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点