在三角形ABC中,求证:cos2A/(a*a)-cos2B/(b*b)=1/(a*a)-1/(b*b).
题目
在三角形ABC中,求证:cos2A/(a*a)-cos2B/(b*b)=1/(a*a)-1/(b*b).
cos2A除以a的平方,*为乘号 /为除号.
答案
记为等价符号
cos2A/(a*a)-cos2B/(b*b)=1/(a*a)-1/(b*b)
(2*cosA*cosA-1)/(a*a)-(2*cosB*cosB-1)/(b*b)=1/(a*a)-1/(b*b)
(cosA*cosA-1)/(a*a)=(cosB*cosB-1)/(b*b)
sinA*sinA/(a*a)=sinB*sinB/(b*b)
sinA/a=sinB/b
正弦定理
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点