证明,4个连续自然数的积 加1的和是一个奇数的平方

证明,4个连续自然数的积 加1的和是一个奇数的平方

题目
证明,4个连续自然数的积 加1的和是一个奇数的平方
答案
设这四个数为n,(n+1),(n+2),(n+3)
n(n+1)(n+2)(n+3)+1
=(n^2+3n)(n^2+3n+2)+1
=(n^2+3n)^2+2(n^2+3n)+1
=(n^2+3n+1)^2
∴这个数为完全平方数
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.