关于x的方程log√2(x)+log1/2(x-1)=log2(a)有解,求实数a的取值范围

关于x的方程log√2(x)+log1/2(x-1)=log2(a)有解,求实数a的取值范围

题目
关于x的方程log√2(x)+log1/2(x-1)=log2(a)有解,求实数a的取值范围
答案
log√2(x)+log1/2(x-1)=2*log2(x)-log2(x-1)=log2(x²/(x-1))
∴log2(x²/(x-1))=log2(a)
即:x²-ax+a=0
△=a²-4a≥0解得a≥4或者0≥a
提示:log[a^n]_[b^m]=m/nlog(a)b
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.