如图,以点O为圆心的两个同心圆,当大圆的弦AB与小圆相切时弦长AB=8,则这两个同心圆所形成的圆环的面积是_.
题目
如图,以点O为圆心的两个同心圆,当大圆的弦AB与小圆相切时弦长AB=8,则这两个同心圆所形成的圆环的面积是______.
答案
连接OC,OA,
∵AB为小圆的切线,C为切点,
∴OC⊥AB,
∴C为AB的中点,即AC=BC=4,
在Rt△OAC中,利用勾股定理得:OA
2=AC
2+OC
2,
∴OA
2-OC
2=16,
则S
圆环=πOA
2-πOC
2=π(OA
2-OC
2)=16π.
故答案为:16π.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点