设数列{an}的前n项和为Sn,若{an}和{Sn+n}都是公差为d(d≠0)的等差数列,则a1= _ .

设数列{an}的前n项和为Sn,若{an}和{Sn+n}都是公差为d(d≠0)的等差数列,则a1= _ .

题目
设数列{an}的前n项和为Sn,若{an}和{
Sn+n
}都是公差为d(d≠0)的等差数列,则a1= ___ .
答案
依题意,{an}和{Sn+n}都是公差为d(d≠0)的等差数列,Sn是关于n的二次函数,常数项为0,∴Sn+n=dn,∴Sn=d2n2-n,∴n≥2,Sn-1=d2(n-1)2-(n-1),两式相减可得an=2d2n-d2-1∵an=dn+c,∴2d2=d,∵d≠0,∴d=12,...
依题意得
Sn+n
=dn,可得Sn=d2n2-n,再写一式,两式相减可得an=2d2n-d2-1,结合an=dn+c,即可得出结论.

等差数列的性质.

本题考查等差数列的性质,考查学生的计算能力,比较基础.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.