设A为m*n矩阵,B为n*s矩阵,证明:AB=0的充要条件是B的每个列向量均为齐次线性方程组AX=0的解.
题目
设A为m*n矩阵,B为n*s矩阵,证明:AB=0的充要条件是B的每个列向量均为齐次线性方程组AX=0的解.
答案
设B=(B1,B2,.,Bs)
AB=A(B1,B2,.,Bs)=(AB1,AB2,.,ABs)=(0,0,.,0)
ABi=0
所以
B的列向量Bi都是AX=0的解.
以上过程步步可逆,所以
AB=0的充要条件是B的每个列向量均为齐次线性方程组AX=0的解.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 英语翻译
- 设X为整数,关于X的方程KX=6-2X的解X为自然数,求K的值?
- “隹”字怎么读?拼音是什么?意思是什么?
- 在平面斜坐标系中,平面上任一点p斜坐标是这样定义的:向量op=xe1+ye2(其中e1 e2分别为与x轴y轴同方向的
- 一道数学题,请解出过程(详情见补充说明,因为问题太长了)
- 甲乙两站间的距离是360千米,一列慢车从甲站开出,平均每小时行驶48千米,一列快车从乙站开出,平均每小时
- 数学归纳证明
- 碳酸银和盐酸反应的离子式?
- They consider it harmful to do sth 这句语法有错吗?it后为什么没is,consider后为什么没that
- y=lg(x+1)(3-x)的增区间