已知双曲线3x^-y^=3,且双曲线上存在关于直线L:y=kx+4的对称点,求实数k的取值范围?谢谢你~
题目
已知双曲线3x^-y^=3,且双曲线上存在关于直线L:y=kx+4的对称点,求实数k的取值范围?谢谢你~
答案
设关于L对称的两个双曲线上的点为P(x1,y1),Q(x2,y2)
则根据对称的定义,可知:线段PQ被直线L垂直平分
由PQ⊥L
可知kPQ=-1/kL=-1/k
因此可设直线PQ的方程为:y=(-1/k)*x+b
联立直线PQ与双曲线:3x^-y^=1的方程,消去y,可得到关于x的一元二次方程:
(3k^-1)x^ +2bkx-(b^+3)k^=0
(当3k^-1=0,即k=±√3/3时,方程为一元一次方程,说明直线PQ与双曲线只有一个交点,必然不可能满足存在对称点的条件,故k=±√3/3不符合题意 ,k≠±√3/3,3k^-1≠0 )
此方程的两个实根必为P,Q这两个直线PQ与双曲线交点的横坐标x1,x2
由韦达定理有:
x1+x2=-2bk/(3k^-1) ①
而此方程要有两个不等的实根x1,x2,必然要使:
△=(2bk)^-4*(3k^-1)*[-(b^+3)k^]>0
化简后即:k^b^+(3k^-1)>0 ②
P,Q两点代入所设的直线PQ的方程有:
y1=(-1/k)x1+b
y2=(-1/k)x2+b
于是:
y1+y2=(-1/k)*(x1+x2)+2b
将①代入:
y1+y2=6bk^/(3k^-1) ③
由刚才已知的L是线段PQ的中垂线,可知,PQ的中点M必在直线L上,而PQ中点M根据中点坐标公式可得:
M((x1+x2)/2,(y1+y2)/2)
代入①,③式,可得:
M(-bk/(3k^-1),3bk^/(3k^-1))
而M点在直线L:y=kx+4上,可将其带入方程两侧替换x,y的位置,进行化简,并最终可得到关于k和b的关系式为:
bk^=3k^-1
当k=0时,显然等式不成立,故k不能为0,k≠0 ※
∴有:b=(3k^-1)/k^ ④
将其带入②,并作出化简,最终可得:
(3k^-1)(4k^-1)>0
k^>1/3或k^√3/3或k
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 已知,在矩形ABCD中,O是AB中点,求证:角AOD=角BOC
- 若阿尔法,贝塔满足-π/2
- 如图1-67所示,半径为r、质量不计的圆盘,盘面在竖直平面内,圆心处有一个垂直盘面的光滑水平固定轴O,圆盘可绕固定轴O在竖直平面内自由转动,在盘的最上端和最下端分别固定一个质量mA=m、mB=2m的小
- 七个连续自然数的得数是105用方程求出来(要有过程)
- 简便计算.37.5%/[5/6-(0.25+1/3)]
- 求∫(x2-sinx)dx
- A(2,4)B(3,-1)c(-3,-4).设向量AB=a向量BC=b向量CA=c (1)求3a+b-3c的坐标 (2)试以b,c为一组基底表示a
- 见水就会消失的纸是什么化学成分?
- 如图,点A,B,C,D在⊙O上,AB=AC,AD与BC相交于点E,AE=1/2ED,延长DB到点F,使FB=1/2BD,连接AF. 求证:直线AF与⊙O相切.
- 57.6乘以1.6+28.8乘以36.8-14.4乘以80简便计算