三角形余弦定理习题…

三角形余弦定理习题…

题目
三角形余弦定理习题…
在△ABC中,已知AC=2,BC=3.cosA=-4/5,求sinB的值.求sin(2B+π/6)的值.要具体步骤.
答案
由题意可求得sinA=3/5
由正弦定理知BC/sinA=AC/sinB 得sinB=2/5
∵cosA=-4/5
∴A为钝角
∴B为锐角 cosB=(√ 21)/5
∴sin(2B+π/6)
=sin(2B)cos(π/6)+cos(2B)sin(π/6)=2sinBcosBcos(π/6)+(1-2(sinB)ˇ2)sin(π/6)=2×(2/5)×((√ 21)/5)×((√3)/2)+(1-2×((2/5)ˇ2))×(1/2)=((12√ 7)+17)/50
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.