12+22+32+42+……+n2=n+(n+1)(2n+1)/6为什么?
题目
12+22+32+42+……+n2=n+(n+1)(2n+1)/6为什么?
怎么证明啊
答案
1^2+2^2+3^2+4^2+.n^2=?
利用恒等式(n+1)^3=n^3+3n^2+3n+1,可以得到:
(n+1)^3-n^3=3n^2+3n+1,
n^3-(n-1)^3=3(n-1)^2+3(n-1)+1
.
3^3-2^3=3*(2^2)+3*2+1
2^3-1^3=3*(1^2)+3*1+1.
把这n个等式两端分别相加,得:
(n+1)^3-1=3(1^2+2^2+3^2+.+n^2)+3(1+2+3+...+n)+n,
由于1+2+3+...+n=(n+1)n/2,
代人上式得:
n^3+3n^2+3n=3(1^2+2^2+3^2+.+n^2)+3(n+1)n/2+n
整理后得:
1^2+2^2+3^2+.+n^2=n(n+1)(2n+1)/6
有个更有趣的证法:
将1^2+2^2+3^3+…+n^2这些数排成三角形的样子:
1
2 2
3 3 3
…………………………
n n ……………………… n n
在这里第n行的和即为n^2.
将三角形分别向左向右旋转120°得到两个新的三角形:
n
n n-1
n n-1 n-2
………………………………
n n-1 …………………………… 2 1
n
n-1 n
n-2 n-1 n
………………………………
1 2 …………………………… n-1 n
将以上三角形同位置的三个数分别相加,得:
2n+1
2n+1 2n+1
2n+1 2n+1 2n+1
……………………………………
2n+1 2n+1 ………………………… 2n+1 2n+1
前三个三角形的和都为1^2+2^2+3^3+…+n^2,最后一个三角形每个数相同,
并且共有n(n+1)/2项,于是和为:n(n+1)/2*(2n+1),有因为是前三
个三角形相加得到,所以:
3(1^2+2^2+3^3+…+n^2)=n(n+1)/2*(2n+1)
即1^2+2^2+3^3+…+n^2=n(n+1)(2n+1)/6.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 某人用一手指紧贴玻璃平面镜,手指与象的距离为8cm,问镜子的厚度.,请说出为什么
- 1.已知函数f(x)=x+4/x(x>0),证明:f(x)在[2,+无穷)那单调递增
- seoul韩国首尔的英文介绍!
- 已知集合A=﹛2,4,a的3次方—2a平方—a+7﹜B=﹛-4,a+3,a的平方—2a+2,a的三次方+a的二次方+3a+7﹜且A∩B=﹛2,4,5﹜求实数a的值
- 一个自然数除以3余2,除以5余3,除以7余4,这个自然数最小是多少?
- 求经典诵读比赛的古诗词
- We _____ _____ played football yesterday afternoon.
- 有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24.例如对1,2,3,4,可作如下运算:(1+2+3)
- 求二阶导数 Y=1/√(x^2-1),Y=2^x*x^2,Y=e^x cosx
- 置之不理中的置字的意思是什么?
热门考点