在Rt△ABC中,∠C=90°,斜边C=5,两直角边的长a,b是关于x的一元二次方程x2-mx+2m-2=0的两根. (1)求m的值(2)求△ABC的面积(3)求较小锐角的正弦值.

在Rt△ABC中,∠C=90°,斜边C=5,两直角边的长a,b是关于x的一元二次方程x2-mx+2m-2=0的两根. (1)求m的值(2)求△ABC的面积(3)求较小锐角的正弦值.

题目
在Rt△ABC中,∠C=90°,斜边C=5,两直角边的长a,b是关于x的一元二次方程x2-mx+2m-2=0的两根.
(1)求m的值(2)求△ABC的面积(3)求较小锐角的正弦值.
答案
(1)∵a,b是方程x2-mx+2m-2=0的解,
∴a+b=m,ab=2m-2,
在Rt△ABC中,由勾股定理得,a2+b2=c2
而a2+b2=(a+b)2-2ab,∵c=5,
∴a2+b2=(a+b)2-2ab=25,
即:m2-2(2m-2)=25,解得,m1=7,m2=-3,
∵a,b是Rt△ABC的两条直角边的长.
∴a+b=m>0,m=-3不合题意,舍去.
∴m=7,
(2)△ABC的面积=
1
2
ab,
∵a+b=m=7,a2+b2=(a+b)2-2ab=25,解得:ab=12,
故)△ABC的面积=
1
2
ab=
1
2
×12=6;
另∵m=7,a,b是方程的两个根,
∴ab=
2m−2
1
=12,
∴△ABC的面积=
1
2
ab=
1
2
×12=6;
(3)当m=7时,原方程为x2-7x+12=0,
解得,x1=3,x2=4,
不妨设a=3,则sinA=
a
c
=
3
5

∴Rt△ABC中较小锐角的正弦值为
3
5
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.