集合M={x|ax²+ax+1>0}=R,求实数a的取值范围
题目
集合M={x|ax²+ax+1>0}=R,求实数a的取值范围
答案
因为M={x|ax²+ax+1>0}=R
所以ax²+ax+1>0恒成立
所以当a=0时,1>0恒成立
当a>0时,要使ax²+ax+1>0恒成立,则△<0
即a^2-4a<0,即0<a<4
综上所述0≤a<4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点