设直线l:x+y=a与圆x^2+y^2=4相交于AB两点O为原点,求向量OA点向量OB的最小值及实数a

设直线l:x+y=a与圆x^2+y^2=4相交于AB两点O为原点,求向量OA点向量OB的最小值及实数a

题目
设直线l:x+y=a与圆x^2+y^2=4相交于AB两点O为原点,求向量OA点向量OB的最小值及实数a
答案
设A(x1,y1),B(x2,y2)直线方程与圆的方程联立:2x^2-2ax+a^2-4=0,则△=32-4a^2>0,所以-2√2<a<2√2.x1+x2=a,x1×x2=(a^2-4)/2y1×y2=(a-x1)×(a-x2)=a^2-a(x1+x2)+x1×x2=(a^2-4)/2所以,OA*OB=x1...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.