一道空间向量的数学题

一道空间向量的数学题

题目
一道空间向量的数学题
已知a,b,c为空间向量,3a-2b=(-2,0,4),c=(-2,1,2),a与c的数量积为2,|b|=4
则cos=?
答案
答案:-1/4
详解如下:
a(x1,y1,z1),b(x2,y2,z2)
b*c=-2 x2+y2+2 z2 (1)
由a与c的数量积为2有:
a*c=-2 x1+y1+2 z1=2 (2)
又由3a-2b=(-2,0,4)有3 x1-2 x2=-2,3 y1-2 y2=0,3 z1-2 z2=4,
得出x1=(2 x2-2)/3,y1=2 y2/3,z1=(2 z2+4)/3, (3)
将(3)式代入(2)并化简后有:-2 x2+y2+2 z2=-3,即b*c=-3,
由c=(-2,1,2)有|c|=3
又|b|=4所以|b|*|c|=12
则有cos=(b*c)/(|b|*|c|)=-1/4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.