设关于x的一元二次方程x²+2ax+b=0,若a是从区间[0,3]任取一个数,b是从区间[0,2]任取一个数,则这个一元二次方程有实跟的概率为 1-﹙2√2﹚/9

设关于x的一元二次方程x²+2ax+b=0,若a是从区间[0,3]任取一个数,b是从区间[0,2]任取一个数,则这个一元二次方程有实跟的概率为 1-﹙2√2﹚/9

题目
设关于x的一元二次方程x²+2ax+b=0,若a是从区间[0,3]任取一个数,b是从区间[0,2]任取一个数,则这个一元二次方程有实跟的概率为 1-﹙2√2﹚/9
为什么用a²≥b积分就算不出来?用a≥√b就能算出来?
答案
关于x的一元二次方程x²+2ax+b=0有实根,
△/4=a^2-b>=0,
a∈[0,3],b∈[0,2],又等价于a>=√b.
在矩形0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.