{an}为等差数列 求证(1)ak a(2k) a(3k) 构成等差数列 (2)a1+an=a(1+k)=a(n-k)(3)Sk S(2k)-Sk S(3k)-S(2k) 构成等差数列

{an}为等差数列 求证(1)ak a(2k) a(3k) 构成等差数列 (2)a1+an=a(1+k)=a(n-k)(3)Sk S(2k)-Sk S(3k)-S(2k) 构成等差数列

题目
{an}为等差数列 求证(1)ak a(2k) a(3k) 构成等差数列 (2)a1+an=a(1+k)=a(n-k)(3)Sk S(2k)-Sk S(3k)-S(2k) 构成等差数列
答案
{an}为等差数列
假设an=a1+(n-1)d,d为公差,a1为第一项
则ak=a1+(k-1)d
a(2k)=a1+(2k-1)d
a(3k)=a1+(3k-1)d
a(2k)-a(k)=[a1+(2k-1)d]-[a1+(k-1)d]=kd
a(3k)-a(2k)=[a1+(3k-1)d]-[a1+(2k-1)d]=kd
所以得证等差
(2) 题目写错了,应该是a1+an=a(1+k)+a(n-k)
a(1+k)+a(n-k)=a1+kd+a1+(n-k-1)d
=2a1+(n-k-1+k)d
=2a1+(n-1)d
a1+an=a1+a1+(n-1)d
=2a1+(n-1)d
所以得证
(3) Sk=(a1+ak)k/2=(2a1+(k-1)d)k/2
S(2k)=(2a1+(2k-1)d)2k/2
S(3k)=(2a1+(3k-1)d)3k/2
所以[S(2k)-Sk]-Sk=[(2a1+(2k-1)d)2k/2-(2a1+(k-1)d)k/2]-(2a1+(k-1)d)k/2
=[(2a1+(2k-1)d)2k/2-(2a1+(k-1)d)2k/2]
=(2k-1)dk-(k-1)dk
=k^2 *d
[S(3k)-S(2k)]-[S(2k)-Sk]=[(2a1+(3k-1)d)3k/2-(2a1+(2k-1)d)2k/2]-[(2a1+(2k-1)d)2k/2-(2a1+(k-1)d)k/2]
=k^2*d
所以等差
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.