四边形ABCD满足AB*BC=CD*DA,|AB|=|CD|,则四边形的形状是平行四边形.怎样证明?(AB BC CD DA为向量)
题目
四边形ABCD满足AB*BC=CD*DA,|AB|=|CD|,则四边形的形状是平行四边形.怎样证明?(AB BC CD DA为向量)
AB BC CD DA是向量阿
AB*BC=|AB|*|BC|*cos
AB+BC+CD+DA=0(AB BC CD DA为向量)
而|AB|=|CD|
则|BC|=|DA|
若是梯形 则|BC|=|DA|不成立
答案
AB*BC=|AB|*|BC|*cos
CD*DA=|CD|*|DA|*cos
因为,|AB|=|CD|
则|BC|*cos=|DA|*cos
AB+BC+CD+DA=0(AB BC CD DA为向量)
而|AB|=|CD|
则|BC|=|DA|
cos=cos
两组对边相等,则该图形为平行四边形
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点