证明:方程X-2^X=1 至少有一个小于1的正根

证明:方程X-2^X=1 至少有一个小于1的正根

题目
证明:方程X-2^X=1 至少有一个小于1的正根
答案
证明:方程X-2^X=1 至少有一个小于1的正根
证明:∵方程X-2^X=1
设f(x)=x-2^x-1
令f’(x)=1-2^xln2=0==>2^x=1/ln2==>x=ln(1/ln2)/ln2=-ln(ln2)/ln2
f’’(x)=-2^x(ln2)^2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.