高数 两道道关于幂级数的题

高数 两道道关于幂级数的题

题目
高数 两道道关于幂级数的题
1.将下列函数展开成X的幂级数,并求收敛域
f(x)=Ln(1+x-2x²)
2.将函数∫(0到x)sint/t dt 展开成x的幂级数,给出收敛域,并求级数∑(n从0到无穷)[(-1)^n]/(2n+1)!的和.
符号那里下标不太好打用括号里的说明了,应该能明白吧,如果有问题请再留言.步骤详细些……最好是用图的那种……谢谢了
答案好像有点问题……不过方法了解了谢谢
答案
f(x)=ln(1+x-2x²)=ln[(1-x)(1+2x)]=ln(1-x)+ln(1+2x)显然,收敛域为:|x|≤1|2x|≤1所以x∈(-1/2,1/2)我们知道:1/(1-x)=1+x+x^2+...+x^n n=0,1,2..两边积分:∫1/(1-x)dx=∫(1+x+x^2+...+x^n)dx n=0,1,2.....
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.