(1) 直线x+y-2√2=0的斜率为-1,CA垂直于该直线,斜率为1,设其方程为y = x +b
带入点A的坐标,得b = 0
CA方程为y = x,与直线y= -2x交于原点,所以圆心为原点,半径为r = |OA| = √(2+2) = 2
圆C的方程: x² + y² = 4
(2) 设AB和AD的斜率分别为k和-k (倾斜角互补)
二者的方程分别为y = kx + m, y = -kx + n
带入A的坐标,可得m = (1-k)√2, n = (1+k)√2
AB: y = kx +(1-k)√2
AD: y = -kx +(1+k)√2
联立AB和圆的方程可得B(√2(k²-2k-1)/(k²+1), √2(-k²-2k+1)/(k²+1)) (另一解为A的坐标,舍去)
联立AD和圆的方程可得D(√2(k²+2k-1)/(k²+1), √2(-k²+2k+1)/(k²+1)) (另一解为A的坐标,舍去)
BD的纵坐标之差为△y = √2(-k²+2k+1)/(k²+1) - √2(-k²-2k+1)/(k²+1) = 4√2k/(k²+1)
BD的横坐标之差为△x = √2(k²+2k-1)/(k²+1) - √2(k²-2k-1)/(k²+1) = 4√2k/(k²+1)
BD的斜率为△y/△x = 1为常数
© 2017-2019 超级试练试题库,All Rights Reserved.