已知A(0,4),B(3,2),抛物线y^=x上的点到直线AB的最短距离为
题目
已知A(0,4),B(3,2),抛物线y^=x上的点到直线AB的最短距离为
答案
:直线AB方程为:y=(-2/3)x+4
与抛物线y^2=x方程联立得:y=(-2/3)y^2+4,即:2y^2+3y-12=0,
判别式△=3*3+4*2*12=105>0,
故直线与抛物线有两个交点,所以最短距离为零.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点