n个圆两两相交能把平面分成几个部分

n个圆两两相交能把平面分成几个部分

题目
n个圆两两相交能把平面分成几个部分
有n个圆,任意两个圆都有且仅有2个交点,并且没有任何3个或三个以上的圆共交点,问这n个圆可以把一个区域分成多少块?
已经知道n=4时,分成14块;n=3时分8块;n=2时分4块。所以前4个回答都不对,麻烦后来人给个正确的公式,
答案
答案是n^2-n+2,(其中n^2表示n的平方),把n=1,2,3,4分别带入公式算,发现答案分别是2,4,8,14与枚举的结果吻合.证明如下:
著名数学家欧拉(Euler,1707-1783)给出一个公式v-e+f=2,其中v是顶点数,e是棱数,f是面数.在本题中,n个圆,两两相交,则v=2*Cn2=n(n-1),其中Cn2是从n个元素中选两个元素的组合,e=n*(2(n-1))=2n(n-1),这个式子的含义是n个圆,每个圆都被其余n-1个圆分出2(n-1)条线段,由欧拉公式,f=e-v+2=2n(n-1)-n(n-1)+2=n^2-n+2,故答案是n^2-n+2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.