1.在空间四边形ABCD中,E.F分别为AB.BC的中点.求证EF和AD为异面直线

1.在空间四边形ABCD中,E.F分别为AB.BC的中点.求证EF和AD为异面直线

题目
1.在空间四边形ABCD中,E.F分别为AB.BC的中点.求证EF和AD为异面直线
2.A是三角形BCD所在平面处的一点,AD=BC.E.F.分别是AB.CD的中点且EF=(根号2)AD除以2,求平面直线AD和BC所成的角
答案
假设EF和AD在同一平面内,
则A,B,E,F在同1平面内;
又A,E属于AB,
∴AB在平面内,
∴B在平面内,
同理C在平面内
故A,B,C,D属于平面,
这与ABCD是空间四边形矛盾.
∴EF和AD为异面直线.
第6页
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.