E为正方形ABCD内的一点,且有∠ADE=∠DAE=15°,求证:△BCE为等边三角形

E为正方形ABCD内的一点,且有∠ADE=∠DAE=15°,求证:△BCE为等边三角形

题目
E为正方形ABCD内的一点,且有∠ADE=∠DAE=15°,求证:△BCE为等边三角形
答案
首先证三角形AEB与三角形DEC为全等三角形,由边角边定理证得
1.边AB=边DC
2.角EAB=角EDC(因为∠ADE=∠DAE, ∠BAD=∠CDA=90度)
3.边AE=边DE(∠ADE=∠DAE得出三角形AED为等腰三角形)
得出两个是全等三角形了,
即得边BE=边CE,
由此得出三角形BEC为等腰三角形,
下面只需得出三角形BEC中的一个角为60度即可,
正好已知条件里给出了一个15度,就是为了算这个60度
不难算出∠BEC=60度
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.