求不定积分∫x^2arcsinx/√(1-x^2)
题目
求不定积分∫x^2arcsinx/√(1-x^2)
答案
换元,t = arcsinx, dx = cost dt
I = ∫ t sin²t dt = (1/2) ∫ t (1﹣cos2t) dt
= (1/4) t² ﹣(t/4)sin2t + (1/4) ∫ sin2t dt
= (1/4) t² ﹣(t/4)sin2t ﹣ (1/8) cos2t + C
= (1/4)arcsin²x ﹣(1/2) x √(1-x²) arcsinx ﹣ (1/8) (1﹣2x²) + C
= (1/4)arcsin²x ﹣(1/2) x √(1-x²) arcsinx + (1/4) x² + C
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点