A,B都是n阶矩阵,满足AB=E,求证矩阵A可逆,且A的逆矩阵等于B
题目
A,B都是n阶矩阵,满足AB=E,求证矩阵A可逆,且A的逆矩阵等于B
答案
detA·detB = det(AB) = det(E) = 1
所以det(A) ≠ 0
所以A可逆
A·B = E
设B'·A = E
则B' = B'·E = B'·(A·B) = (B'·A)·B = E·B = B
所以 AB = BA = E
所以A的逆矩阵等于B
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点