求 1/sqrt(x^2+1) 的不定积分
题目
求 1/sqrt(x^2+1) 的不定积分
答案
dx /√(x^2+1)
=∫ [x+√(x^2+1)] /{√(x^2+1)*[x+√(x^2+1)]} dx
=∫ [1 + x/√(x^2+1)]dx /[x+√(x^2+1)]
=∫ d[x + √(x^2+1)] /[x+√(x^2+1)]
= ln[x+√(x^2+1)] + C
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点